Polimorfisme Gen M SARS-CoV-2 Pada Isolat Sumatera Barat

Fauzul Azhim, Desmawati Desmawati, Elizabeth Bahar, Andani Eka Putra

Abstract

Tujuan: mengetahui polimorfisme gen M SARS-CoV-2 pada isolat Sumatera Barat; Metode: penelitian dengan desain deskriptif eksploratori menggunakan sampel koleksi Laboratorium Pusat Diagnostik dan Riset Penyakit Infeksi Fakultas Kedokteran Universitas Andalas Padang. Sampel dipreparasi untuk disekuensing lalu dianalisis menggunakan software CLC Genomics Workbench app; Hasil: ditemukan 8 mutasi substitusi pada gen M SARS-CoV-2, yaitu A26528T, C26735T, G26763T, A26867G, C26895T, G26951T, A27019G dan G27088T serta 1 mutasi delesi, yaitu del27055–27059 (ATTAC); Kesimpulan: mutasi C26735T merupakan mutasi synonymous yang paling banyak ditemukan pada isolat Sumatera Barat.

Keywords

Biomedical Sciences

Full Text:

PDF

References

Susilo A, Rumende CM, Pitoyo CW, Santoso WD, Yulianti M, Herikurniawan, et al. Coronavirus disease 2019: tinjauan literatur terkini. Jurnal Penyakit Dalam Indonesia. 2020;7(1):45–67.

Wu F, Zhao S, Yu B, Chen Y, Wang W, Song Z, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9.

Corona.sumbarprov. Pemprov Sumbar turut prihatin, 5 orang positif terkena wabah Covid-19 [Internet]. 2020 [cited 2020 April 10]. Available from: https://corona.sumbarprov.go.id/details/detail_master_berita/15

Riedel S, Hobden JA, Miller S, Morse SA, Mietzner TA, Detrick B, et al. Jawetz melnick & adelbergs medical microbiology, 28th edition. New York: McGraw-Hill Education; 2019.

Li D, Zhang J, Li J. Primer design for quantitative real-time PCR for the emerging coronavirus SARS-CoV-2. Theranostics. 2020;10(16):7150–62.

Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of covid-19. J Pharmaceut Anal. 2020;10(2):102–8.

Liu J, Xing Z, Qiaoxia T, Wei L, Baoju W, Sutter K, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020;92(5):491–4.

Yuliana Y. Corona virus diseases (covid-19): sebuah tinjauan literatur. Wel Heal Mag. 2020;2(1):187–92.

Zang R, Castro MFG, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020;5(47):eabc3582.

Zheng Y, Zhuang M, Han L, Zhang J, Nan M, Zhan P, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Sig Transduct Targ Ther. 2020;5(299):1–13.

Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. Insights into SARS-CoV-2 genome, structure, evolution. pathogenesis and therapies: structural genomics approach. BBA - Mol Bas Dis. 2020;1866(10):1–16.

Lopandic Z, Protic-Rosic I, Todorovic A, Glamoclija S, Gnjatovic M, Cujic D, et al. IgM and IgG immunoreactivity of SARS-CoV-2 recombinant M protein. Int J Mol Sci. 2021;22(9):4951.

Malik JA, Mulla AH, Farooqi T, Potto FH, Anwar S, Rengasamy KRR. Targets and strategies for vaccine development against SARS-CoV-2. Biomed Pharmacother. 2021;137:111254.

Yen-Der L, Wei-Yu C, Jun-Han S, Ferrall L, Chien-Fu H, Wu TC. Coronavirus vaccine development: from SARS and MERS to covid-19. J Biomed Sci. 2020;27(104):1–23.

Lu R, Xiang Z, Juan L, Peihua N, Bo Y, Honglong W, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565–74.

Walls AC, Young-Jun P, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–92.

Roy C, Mandal SM, Mondal SK, Mukherjee S, Mapder T, Ghosh W, et al. Trends of mutation accumulation across global SARS-CoV-2 genomes: implications for the evolution of the novel coronavirus. Genom. 2020;112(6):5331–42.

Hoq MI, Bhuiyan RH, Rahman MKR, Hossen I, Rudra S, Hossain MA, et al. Genome sequence of a SARS-CoV-2 strain from a covid-19 clinical sample from the Khagrachari District of Bangladesh. Microbiol Resour Announc. 2021;10(13):e00189–21.

Joshi M, Puvar A, Kumar D, Ansari A, Pandya M, Raval J, et al. Genomic variations in SARS-CoV-2 genomes from Gujarat: underlying role of variants in disease epidemiology. Front Genet. 2021;12(586569):1–13.

Monleau M, Montavon C, Laurent C, Segondy M, Montes B, Delaporte E, et al. Evaluation of different RNA extraction methods and storage conditions of dried plasma or blood spots for human immunodeficiency virus type 1 RNA quantification and PCR amplification for drug resistance testing. J Clin Microbiol. 2009;47(4):1107–18.

Liu X, Harada S. RNA Isolation from mammalian samples. Curr Prot Mol Bio. 2013;4.16.1–4.16.10.

Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12:683–91.

Koyama T, Platt D, Parida L. Variant analysis of SARS-CoV-2 genomes. Bull Worl Health Organ. 2020;98(7):495–504.

Zekri ARN, Easa Amer K, Hafez MM, Hassan ZK, Ahmed OS, Soliman HK, et al. Genomic characterization of SARSCoV-2 in Egypt. J Adv Res [Internet]. 2021 May;30:123–32. Available from: https://doi.org/10.1016/j.jare.2020.11.012

Gunadi, Wibawa H, Marcellus, Hakim MS, Daniwijaya EW, Rizki LP, et al. Full-length genome characterization and phylogenetic analyisis of SAR-CoV-2 virus strains from Yogyakarta and Central Java, Indonesia. Peer J. 2020;8:e10575.

Zeghbib S, Somogyi BA, Zana B, Kemenesi G, Herczeg R, Derrar F, et al. The Algerian chapter of SARS-CoV-2 pandemic: an evolutionary, genetic, and epidemiological prospect. Vir. 2021;13(8):1–20.

Nyunt MH, Soe HO, Aye KT, Aung WW, Kyaw YY, Kyaw AK, et al. Surge of severe acute respiratory syndrome coronavirus 2 infections linked to single introduction of a virus strain in Myanmar 2020. Sci Rep. 2021;11(10203):1–6.

Sengupta A, Hassan SS, Choudhury PP. Clade GR and clade GH isolates of SARS-CoV-2 in Asia show highest amount of SNPs. Infect genet evol. 2021;89(104724).

Kim JS, Jang JH, Kim JM, Chung YS, Yoo CK, Han MG. Genome-wide identification and characterization of point mutations in the SARS-CoV-2 genome. Osong Public Health and Res Perspect. 2020;11(3):101–111.

Troyano-Hernaez P, Reinosa R, Holguin A. Evolution of SARS-CoV-2 envelope, membrane, nucleocapsid, and spike structural proteins from the beginning of the pandemic to September 2020: a global and regional approach by epidemiological week. Vir. 2021;13(2):243.

Nguyen TT, Pathirana PN, Nguyen T, Nguyen QVH, Bhatti A, Nguyen DC, et al. Genomic mutations and changes in protein secondary structure and solvent accessibility of SARS-CoV-2 (covid-19 virus). Sci Rep. 2021;11(3487):1–16.

Watson JD, Baker TA, Bell SP, Gan A, Levine M, Losick R. The genetic code. In: Molecular biology of the gene. Seventh edition. New York: Cold Spring Harbor Laboratory Press; 2014. p. 583.

Nature. Frameshift mutation / frame-shift mutation; frameshift [Internet]. 2014 [cited 2021 September 20]. Available from: https://www.nature.com/scitable/definition/frameshift-mutation-frame-shift-mutation-frameshift-203/



-->