Potensi Ekstrak Daun Ruku-Ruku (Ocimum tenuiflorum) Terenkapsulasi Nanopartikel Kitosan Sebagai Agen Terapi Meningitis Berbasis Bahan Alam

Rahmadini Aulia, Rauza Sukma Rita

Abstract

Meningitis adalah penyakit infeksi pada meningen atau selaput yang melapisi otak dan sumsum tulang belakang. Superantigen bakteri dapat mempengaruhi sistem kekebalan tubuh melalui sitokin proinflamasi dalam skala besar. Resistensi terhadap antibiotik membuat perlunya pencarian terapi alternatif berbahan  alam. Salah satu tumbuhan alami yang berpotensi sebagai antimikroba, antikanker, antiinflamasi, dan antioksidan adalah ruku-ruku (Ocimum tenuiflorum). Tujuan: untuk menganalisis kandungan daun ruku-ruku sebagai agen terapi meningitis. Metode: Pencarian tinjauan naratif ini dilakukan melalui tiga basis data yaitu Pubmed, Science Direct, dan Google Scholar dengan kata kunci “Meningitis”, “Ocimum tenuiflorum”, “Nanopartikel”, dan “Kitosan”. Hasil:  Ruku-ruku mengandung asam ursolat yang berperan pada regulasi katepsin yang berhubungan dengan keparahan meningitis. Kandungan flavonoid ruku-ruku berfungsi sebagai antiinflamasi. Kesimpulan: Ruku-ruku berpotensi sebagai agen terapi alternatif meningitis berbasis bahan alam.

Keywords

meningitis, Ocimum tenuiflorum, sitokin proinflamasi, nanopartikel, kitosan

Full Text:

PDF

References

Alshahrani WA. Effectiveness of Steroids in the Treatment of Bacterial Meningitis in Adults: Narrative Review. Int J Med. 2020 ;7(1): 7-10.

Kementerian Kesehatan RI. Panduan Deteksi dan Respon Penyakit Meningitis Meningokokus. 2019.

Wall EC, Chan JM, Gil E, Heyderman RS. Acute bacterial meningitis. Curr Opin Neurol. 2021 34(3):386–95.

Brouwer MC, Van de Beek D. Bacterial Meningitis. Int Encycl Public Heal [Internet]. 2021 Dec 8 [cited 2022 Jul 24];21–5. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470351/

Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, et al. The NLRP3 Inflammasome Contributes to Brain Injury in Pneumococcal Meningitis and Is Activated through ATP-Dependent Lysosomal Cathepsin B Release. J Immunol. 2011 Nov 15;187(10):5440–51.

Janowski AB, Newland JG, Heyderman R, Leib S. From the microbiome to the central nervous system, an update on the epidemiology and pathogenesis of bacterial meningitis in childhood. F1000Research 2017: 6(F1000 Faculty Rev):86: 1-10.

Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 2016; 352(6285): 544–545.

Ventola CL. The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharm Ther. 2015;40(4): 277-283.

Llor C, Bjerrum L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf. 2014;5(6):229–41.

Noreen S, Maqbool I, Madni A. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur J Pharmacol. 2021;894: 1-5.

Perlenfein TJ, Murphy RM. A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation. J Biol Chem. 2017;292(51): 21071–21082

Yadati T, Houben T, Bitorina A, Shiri-Sverdlov R. The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management. Cells. 2020;9(1679):1-26

Huang S, Thomsson KA, Jin C, Alweddi S, Struglics A, Rolfson O, et al. Cathepsin g Degrades Both Glycosylated and Unglycosylated Regions of Lubricin, a Synovial Mucin. Sci Reports. 2020;;10(1):1–12.

What is the role of cytokines in the pathogenesis of meningitis? [Internet]. [cited 2022 Jul 24]. Available from: https://www.medscape.com/answers/232915-10695/what-is-the-role-of- cytokines-in-the-pathogenesis-of-meningitis

Sulik A, Kroten A, Wojtkowska M, Oldak E. Increased Levels of Cytokines in Cerebrospinal Fluid of Children with Aseptic Meningitis Caused by Mumps Virus and Echovirus 30. Scand J Immunol. 2014 ;79(1):68–72.

Aggarwal A, Mali RR. Ocimum tenuiflorum – A Medicinal Plants with its versatile uses. Int. J Rec. Adv. Sci. Tech., 2015; 2(2):1-10

Do Nascimento PGG, Lemos TLG, Bizerra AMC, Arriaga AMC, Ferreira DA, Santiago GMP, et al. Antibacterial and Antioxidant Activities of Ursolic Acid and Derivatives. Molecules. 2014; 19: 1317-1327

Sharan S, Sarin NB, Mukhopadhyay K. Elicitor-mediated enhanced accumulation of ursolic acid and eugenol in hairy root cultures of Ocimum tenuiflorum L. is age, dose, and duration dependent. South African J Bot. 2019 Aug 1;124:199–210.

Nagai A, Murakawa Y, Terashima M, Shimode K, Umegae N, Takeuchi H, et al. Cystatin C and cathepsin B in CSF from patients with inflammatory neurologic diseases. Neurology. 2000 Dec 26;55(12):1828–32.

Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem. 2019:299.

Sankhalkar S, Vernekar V. Quantitative and Qualitative Analysis of Phenolic and Flavonoid Content in Moringa oleifera Lam and Ocimum tenuiflorum L. Pharmacognosy Res. 2016; 8(1):16–21.

Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, et al. Facets of Nanotechnology as Seen in Food Processing, Packaging, and Preservation Industry. Biomed Res Int. 2015;2015:1-17

Sahandi Zangabad P, Karimi M, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, et al. Nanocaged Platforms: Modification, Drug Delivery and Nanotoxicity Opening Synthetic Cages to Release the Tiger: Nanocages for Drug Delivery. Nanoscale. 2017; 9(4): 1356–1392



-->