Bioaktivitas Antikanker dari Quercetin Bertarget Src dalam Terapi Kanker Paru Bukan Sel Kecil
Abstract
Kanker paru adalah salah satu jenis kanker yang paling umum dengan penyebab utama kematian akibat kanker di seluruh dunia. Kanker paru bukan sel kecil (NSCLC) adalah jenis kanker yang menyumbang sekitar 85% dari semua kejadian kanker paru-paru. Ini juga memiliki prognosis dan pilihan pengobatan yang buruk. Src adalah salah satu target paling efektif yang terkait dengan pengembangannya. Penelitian ini merupakan studi tinjauan pustaka dengan menggunakan data dari penelitian asli berdasarkan studi in vitro dan in vivo. Hasil penelitian menunjukkan bahwa Que menghambat induksi proliferasi dan metastasis sel NSCLC dengan menekan ekspresi Src yang kemudian menghambat jalur pensinyalan Fn14/NF-κB. Quercetin juga mengganggu pensinyalan faktor nuklir kappa B (NF-κB) yang mengatur ekspresi beberapa gen yang terlibat dalam karsinogenesis, peradangan, dan sitoprotektif. Dengan membungkam Src, metastasis kanker paru-paru akan berkurang. Ketika Src dihambat, sel-sel yang dilepaskan mengalami anoikis sehingga terjadi kematian sel dengan kecepatan mekanisme penghambatan. Dengan demikian, dapat disimpulkan bahwa quercetin berperan sebagai antikanker melalui penghambatan proliferasi tumor, metastasis, dan angiogenesis melalui jalur pensinyalannya pada sel kanker paru. Diharapkan ada penelitian berkelanjutan untuk meningkatkan status kesehatan global, khususnya pada pasien NSCLC.
Keywords
Full Text:
PDFReferences
Almatroodi, S.A., Alsahli, M.A., Almatroudi, A., Verma, A.K., Aloliqi, A., Allemailem, K.S., Khan, A.A., Rahmani, A.H., 2021. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules 26. https://doi.org/10.3390/molecules26051315
Barta, J.A., Powell, C.A., Wisnivesky, J.P., 2019. Global epidemiology of lung cancer. Ann. Glob. Heal. https://doi.org/10.5334/aogh.2419
Beck, J.T., Ismail, A., Tolomeo, C., 2014. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: An emerging treatment strategy for squamous cell lung carcinoma. Cancer Treat. Rev. https://doi.org/10.1016/j.ctrv.2014.06.006
Chen, Y., Huang, Y., Kanwal, M., Li, G., Yang, J., Niu, H., Li, Z., Ding, X., 2019. MUC16 in non-small cell lung cancer patients affected by familial lung cancer and indoor air pollution: Clinical characteristics and cell behaviors. Transl. Lung Cancer Res. https://doi.org/10.21037/tlcr.2019.07.10
Cheng, E., Whitsett, T.G., Tran, N.L., Winkles, J.A., 2015. The TWEAK receptor Fn14 is an Src-inducible protein and a positive regulator of Src-driven cell invasion. Mol. Cancer Res. https://doi.org/10.1158/1541-7786.MCR-14-0411
Dasari, S., Bernard Tchounwou, P., 2014. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. https://doi.org/10.1016/j.ejphar.2014.07.025
Deng, X.H., Song, H.Y., Zhou, Y.F., Yuan, G.Y., Zheng, F.J., 2013. Effects of quercetin on the proliferation of breast cancer cells and expression of survivin in vitro. Exp. Ther. Med. https://doi.org/10.3892/etm.2013.1285
Dong, Y., Yang, J., Yang, L., Li, P., 2020. Quercetin Inhibits the Proliferation and Metastasis of Human Non-Small Cell Lung Cancer Cell Line: The Key Role of Src-Mediated Fibroblast Growth Factor-Inducible 14 (Fn14)/Nuclear Factor kappa B (NF-κB) pathway. Med. Sci. Monit. https://doi.org/10.12659/MSM.920537
F.M., J., G.E., G., 2007. Src family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anticancer. Agents Med. Chem. 7.
Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D.M., Piñeros, M., Znaor, A., Bray, F., 2019. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer. https://doi.org/10.1002/ijc.31937
Funakoshi-Tago, M., Tago, K., Andoh, K., Sonoda, Y., Tominaga, S., Kasahara, T., 2005. Functional role of c-Src in IL-1-induced NF-kappa B activation: c-Src is a component of the IKK complex. J. Biochem. 137, 189–197.
Gao, P., Niu, N., Wei, T., Tozawa, H., Chen, X., Zhang, C., Zhang, J., Wada, Y., Kapron, C.M., Liu, J., 2017. The roles of signal transducer and activator of transcription factor 3 in tumor angiogenesis. Oncotarget. https://doi.org/10.18632/oncotarget.19932
Giaccone, G., Zucali, P.A., 2008. Src as a potential therapeutic target in non-small-cell lung cancer. Ann. Oncol. https://doi.org/10.1093/annonc/mdn048
Hoesel, B., Schmid, J.A., 2013. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer. https://doi.org/10.1186/1476-4598-12-86
Hystad, P., Demers, P.A., Johnson, K.C., Carpiano, R.M., Brauer, M., 2013. Long-term residential exposure to air pollution and lung cancer risk. Epidemiology. https://doi.org/10.1097/EDE.0b013e3182949ae7
Jean, C., Chen, X.L., Nam, J.O., Tancioni, I., Uryu, S., Lawson, C., Ward, K.K., Walsh, C.T., Miller, N.L.G., Ghassemian, M., Turowski, P., Dejana, E., Weis, S., Cheresh, D.A., Schlaepfer, D.D., 2014. Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J. Cell Biol. https://doi.org/10.1083/jcb.201307067
Kemenkes RI, 2017. Pedoman Nasional Pelayanan Kedokteran Kanker Paru, komite penanggulangan kanker nasional.
Kenfield, S.A., Wei, E.K., Stampfer, M.J., Rosner, B.A., Colditz, G.A., 2008. Comparison of aspects of smoking among the four histological types of lung cancer. Tob. Control. https://doi.org/10.1136/tc.2007.022582
Kopustinskiene, D.M., Jakstas, V., Savickas, A., Bernatoniene, J., 2020. Flavonoids as anticancer agents. Nutrients. https://doi.org/10.3390/nu12020457
Li, C., Zhang, W.J., Frei, B., 2016. Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction. Redox Biol. 9. https://doi.org/10.1016/j.redox.2016.06.006
Li, L.H., Wu, L.J., Tashiro, S.I., Onodera, S., Uchiumi, F., Ikejima, T., 2006. The roles of Akt and MAPK family members in silymarin’s protection against UV-induced A375-S2 cell apoptosis. Int. Immunopharmacol. 6. https://doi.org/10.1016/j.intimp.2005.08.003
López-Cima, M.F., García-Pérez, J., Pérez-Gómez, B., Aragonés, N., López-Abente, G., Tardón, A., Pollán, M., 2011. Lung cancer risk and pollution in an industrial region of Northern Spain: A hospital-based case-control study. Int. J. Health Geogr. https://doi.org/10.1186/1476-072X-10-10
McGonigle, N., 2020. Lung cancer. Surg. (United Kingdom). https://doi.org/10.1016/j.mpsur.2020.03.008
NCCN, 2016. NCCN Clinical Practice Guidelines in Oncology-Non-small cell lung cancer, NCCN.
Norouzi, S., Gorgi Valokala, M., Mosaffa, F., Zirak, M.R., Zamani, P., Behravan, J., 2018. Crosstalk in cancer resistance and metastasis. Crit. Rev. Oncol. Hematol. https://doi.org/10.1016/j.critrevonc.2018.09.017
Organization, W.H., 2020. WHO | Cancer Key Facts [WWW Document]. WHO. URL https://www.who.int/health-topics/cancer#tab=tab_1
Park, S., 2015. Polyphenol compound as a transcription factor inhibitor. Nutrients. https://doi.org/10.3390/nu7115445
Priego, S., Feddi, F., Ferrer, P., Mena, S., Benlloch, M., Ortega, A., Carretero, J., Obrador, E., Asensi, M., Estrela, J.M., 2008. Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: A Bcl-2- and superoxide dismutase 2-dependent mechanism. Mol. Cancer Ther. 7. https://doi.org/10.1158/1535-7163.MCT-08-0363
Raffa, D., Maggio, B., Raimondi, M.V., Plescia, F., Daidone, G., 2017. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem. https://doi.org/10.1016/j.ejmech.2017.07.034
Ramos, S., 2007. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem. https://doi.org/10.1016/j.jnutbio.2006.11.004
Rauf, A., Imran, M., Khan, I.A., ur-Rehman, M., Gilani, S.A., Mehmood, Z., Mubarak, M.S., 2018. Anticancer potential of quercetin: A comprehensive review. Phyther. Res. https://doi.org/10.1002/ptr.6155
Testa, U., Castelli, G., Pelosi, E., 2018. Lung cancers: Molecular characterization, clonal heterogeneity and evolution, and cancer stem cells. Cancers (Basel). https://doi.org/10.3390/cancers10080248
Wang, W., Liu, F., Wang, Chaoyang, Wang, Chengde, Tang, Y., Jiang, Z., 2018. Src promotes metastasis of human non-small cell lung cancer cells through Fn14-mediated NF-κB signaling. Med. Sci. Monit. https://doi.org/10.12659/MSM.906266
World Health Organization, 2020. Estimated number of new cases in 2020, worldwide, both sexes, all ages [WWW Document]. Int. Agency Res. Cancer. URL https://gco.iarc.fr/today/online-analysis-table?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&i (accessed 1.24.20).
Wu, T.C., Chan, S.T., Chang, C.N., Yu, P.S., Chuang, C.H., Yeh, S.L., 2018. Quercetin and chrysin inhibit nickel-induced invasion and migration by downregulation of TLR4/NF-κB signaling in A549 cells. Chem. Biol. Interact. https://doi.org/10.1016/j.cbi.2018.07.010
Xingyu, Z., Peijie, M., Dan, P., Youg, W., Daojun, W., Xinzheng, C., Xijun, Z., Yangrong, S., 2016. Quercetin suppresses lung cancer growth by targeting Aurora B kinase. Cancer Med. https://doi.org/10.1002/cam4.891
Yang, W.S., Jeong, D., Yi, Y.S., Lee, B.H., Kim, T.W., Htwe, K.M., Kim, Y.D., Yoon, K.D., Hong, S., Lee, W.S., Cho, J.Y., 2014. Myrsine seguinii ethanolic extract and its active component quercetin inhibit macrophage activation and peritonitis induced by LPS by targeting to Syk/Src/IRAK-1. J. Ethnopharmacol. 151. https://doi.org/10.1016/j.jep.2013.12.033
Yuan, H., Ma, Q., Ye, L., Piao, G., 2016. The traditional medicine and modern medicine from natural products. Molecules. https://doi.org/10.3390/molecules21050559