Mekanisme Molekuler Dari Resistensi Insulin Pada Diabetes Melitus Tipe Dua

Eva Decroli

Abstract

Diabetes melitus merupakan kelainan endokrin yang paling sering ditemukan. Salah satu patofisiologi utamanya adalah resistensi jaringan target terhadap insulin. Pada tahap seluler, resistensi insulin adalah adanya kemampuan yang tidak adekuat dari insulin signaling pada reseptor insulin terhadap molekul pada proses aksi insulin. Sekuensi patofisiologi yang tepat yang menyebabkan resistensi insulin masih belum banyak diketahui. Tujuan: Untuk mengetahui mekanisme molekuler dari resistensi insulin pada diabetes melitus tipe dua. Metode: Artikel ini ditulis berdasarkan studi kepustakaan yang berhubungan dengan mekanisme molekuler dari resistensi insulin pada diabetes melitus tipe dua. Hasil:  Banyak molekul yang terlibat dalam pengolahan intraseluler dari insulin signaling yang diperankan oleh insulin, IRS-2, PKB, protein Foxo dan P85 subunit PI-3 kinase. Disfungsi-disfungsi dari molekul ini menyebabkan resistensi insulin in vivo. Identifikasi defek signaling dan pemahaman hubungan kompleks dari faktor yang berbeda dalam memodulasi sensitivitas insulin yang merupakan prasyarat penting untuk pengembangan senyawa anti-diabetes baru dan lebih spesifik. Simpulan: Dengan menjelaskan mekanisme molekuler pada insulin signaling yang bertanggung jawab untuk resistensi insulin, dapat dipahami sebagian besar dari resistensi insulin secara molekuler.

Keywords

diabetes melitus; resistensi insulin; insulin signaling; substrat insulin; reseptor insulin

Full Text:

PDF

References

Decroli E. Diabetes Melitus Tipe 2. Padang: Pusat Penerbitan Bagian Ilmu Penyakit Dalam Fakultas Kedokteran Universitas Andalas; 2019.

Decroli E, Kam A, Dillasamola D. The percentage of depressive symptoms in patients with type 2 diabetes mellitus in M Djamil General Hospital Padang, Indonesia. Journal of Research in Pharmacy. 2019;23(2):292-297.

Decroli E, Manaf A, Syahbuddin S, Syafrita Y, Dillasamola D. The Correlation between Malondialdehyde and Nerve Growth Factor Serum level with Diabetic Peripheral Neuropathy Score. Open Access Maced J Med Sci. 2019;7(1):103-106.

Decroli E, Manaf A, Syahbuddin S, Waspadji S, Dillasamola D. The Role of Survivin and RAF-1 Kinase Against Enhancement of Pancreatic Beta-Cell Apoptosis in Patient with Type 2 Diabetes Mellitus. Asian Journal of Pharmaceutical and Clinical Research. 2018:11(11).344-347.

Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12-22.

Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6(1):a009191.

Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012;55:2565-2582.

Mackenzie RWA, Elliott BT. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes. 2014;7:55-64.

Alessi DR, Cohen P. Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev. 1998;8:55-62.

Honma M, Sawada S, Ueno Y, Murakami K, Yamada T, Gao J, et al. Selective insulin resistance with differential expressions of IRS-1 and IRS-2 in human NAFLD livers. International Journal of Obesity. 2018;42:1544-1555.

Albegali AA, Shahzad M, Mahmood S, Ullah MI. Genetic association of insulin receptor substrate-1 (IRS-1, rs1801278) gene with insulin resistant of type 2 diabetes mellitus in a Pakistani population. 2019;46(6):1-7.

Hancer NJ, Qiu W, Cherella C, Li Y, Copps KD, White MF. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. The Journal of Biological Chemistry. 2014;289(18):12467-12484.

Rajan MR, Fagerholm S, Jonsson C, Kjolhede P, Turkina MV, Stralfors P. Phosphorylation of IRS1 at serine 307 in response to insulin in human adipocytes is not likely to be catalyzed by p70 ribosomal S6 kinase. PLoS ONE. 2013;8(4):e59725.

Karki S, Farb MG, Ngo DT, Myers S, Puri V, Hamburg NM, et al. Forkhead box O-1 modulation improves endothelial insulin resistance in human obesity. Arterioscler Thromb Vasc Biol. 2015;35(6):1498-1506.

Lee S, Dong HH. FoxO integration of insulin signaling with glucose and lipid metabolism. J Endocrinol. 2017;233(2):R67-R79.

Winnay JN, Solheim MH, Dirice E, Sakaguchi M, Noh H, Kang HJ, et al. PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest. 2016;126(4):1401-1412.

Di Zazzo E, Feola A, Zuchegna C, Romano A, Donini CF, Bartollino S, et al. The p85 regulatory subunit of PI3K mediates cAMP-PKA and insulin biological effects on MCF-7 cell growth and motility. The Scientific World Journal. 2014; article ID 565839.

Xing Y, Zhang J, Wei H, Zhang H, Guan Y, Wang X, et al. Reduction of the PI3K/Akt related signaling activities in skeletal muscle tissues involves insulin resistance in intrauterine growth restriction rats with catch-up growing. PLoS ONE. 2019;14(5):e0216665.

Barouki R. Protein kinase C isoforms: mediators of reactive lipid metabolites in the development of insulin resistance. FEBS Letters. 2011;585(2):269-274.

Ahmed MS, Pelletier J, Leumann H, Gu HF, Ostenson C. Expression of protein kinase C isoforms in pancreatic islets and liver of male Goto-Kakizaki rats, a model of type 2 diabetes. PLoS ONE. 2015;10(10):e0141292.

Kitessa SM, Abeywardena MY. Lipid-induced insulin resistance in skeletal muscle: the chase for the culprit goes from total intramuscular fat to lipid intermediates, and finally to species of lipid intermediates. Nutrients. 2016;8(8):466.

Chiefari E, Tanyolac S, Iiritano S, Sciacqua A, Capula C, Arcidiacono B, et al. A polymorphism of HMGA1 is associated with increased risk of metabolic syndrome and related components. Sci Rep. 2013;3:1491.

Arcidiacono B, Chiefari E, Messineo S, Bilotta FL, Pastore I, Corigliano DM, et al. HMGA1 is a novel transcriptional regulator of the FoxO1 gene. Endocrine. 2018;60:56-64.

Chiefari E, Nevolo MT, Arcidiacono B, Maurizio E, Nocera A, Iiritano S, et al. HMGA1 is a novel downstream nuclear target of the insulin receptor signaling pathway. Sci Rep. 2012;2:251.

Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC-1 , glucose metabolism and type 2 diabetes mellitus. J Endocrinol. 2016;229(3):R99-R115.

Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect. 2015;4(1):R1-R15.

Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015;14:121.

Yan Y, Ma R, Zhang J, He J, Ma J, Pang H, et al. Association of insulin resistance with glucose and lipid metabolism: ethnic heterogeneity in far western China. Mediators of Inflammation. 2016; article ID 3825037.

D'Elia L, Strazzulio P, Iacone R, Russo O, Galletti F. Leptin levels predict the development of insulin resistance in a sample of adult men - The Olivetti Heart Study. Nutrition, Metabolism, and Cardiovascular Diseases. 2019;29(1):39-44.

Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 2013;417:80-84.

Su K, Li Y, Zhang D, Yuan J, Zhang C, Liu Y, et al. Relation of circulating resistin to insulin resistance in type 2 diabetes and obesity: a systematic review and meta-analysis. Front Physiol. 2019;10:1399.



-->