ARTIKEL PENELITIAN # Correlation Of Neutrophil Lymphocyte Ratio And Platelet Lymphocyte Ratio With Severity Of COVID-19 Fadil Ahmadhia Warman¹, Dwi Yulia², Husnil Kadri³, Roza Mulyana⁴, Elfira Yusri², Syandrez Prima Putra⁵ - 1. Department of Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia; - 2. Department of Clinical Pathology, Faculty of Medicine, Universitas Andalas, Padang, Indonesia; - 3. Department of Biochemistry, Faculty of Medicine, Universitas Andalas, Padang, Indonesia; - 4. Department of Internal Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia; - 5. Department of Microbiology, Faculty of Medicine, Universitas Andalas, Padang, Indonesia. Korespondensi: Fadil Ahmadhia Warman; fadilwarman@gmail.com; 082387388084 #### **Abstrak** Tujuan: Pemeriksaan neutrophil-to-lymphocyte ratio (NLR) dan platelet-to-lymphocyte ratio (PLR) adalah pemeriksaan sederhana yang dapat dilakukan sebelum pasien COVID-19 dirawat inap. Pemeriksaan ini berguna untuk menentukan diagnostik dan prognostik pasien. Tujuan penelitian adalah untuk menentukan hubungan NLR dan PLR dengan tingkat keparahan pasien rawat inap COVID-19; Metode: Penelitian ini merupakan penelitian analitik dengan pendekatan cross-sectional menggunakan data sekunder dari 289 rekam medik pasien yang terkonfirmasi COVID-19 periode Juni-Agustus 2021. Dalam pengambilan sampel, digunakan teknik total sampling lalu diolah dengan uji chisquare; Hasil: Subjek penelitian terbanyak berada pada rentang 26-45 tahun (28,4%). Lebih dari setengah subjek berjenis kelamin perempuan (61,6%). Ditemukan sebanyak 99 orang pasien (34,3%) dengan kondisi parah. Kurang dari separuh pasien dengan hasil pemeriksaan leukosit dan trombosit yang tidak normal yaitu 64 (22,1%) dan 56 (19,4%). Pasien dengan pemeriksaan NLR dan PLR yang tidak normal sebanyak 135 (46,7%) dan 123 (42,6%). Terdapat hubungan yang bermakna antara NLR dengan tingkat keparahan pasien rawat inap COVID-19 (p<0,001, OR=9,452). Terdapat hubungan yang bermakna antara PLR dengan tingkat keparahan pasien rawat inap COVID-19 (p<0,001, OR=7,268); Kesimpulan: Terdapat hubungan yang signifikan antara NLR dan PLR dengan tingkat keparahan pasien rawat inap COVID-19 di Rumah Sakit Universitas Andalas. Kata kunci: COVID-19; RNL; RTL; tingkat keparahan. # Abstract **Objective:** The neutrophil lymphocyte ratio (NLR) and platelet lymphocyte ratio (PLR) tests are simple tests can be done before a COVID-19 patient hospitalized. This examination is useful for determining the diagnosis and prognostic of the patient. The aim of the study was to determine the correlation between NLR and PLR with the severity of COVID-19; **Method:** This research was an analytical study with a cross-sectional approach using secondary data from 289 medical records of patients with confirmed COVID-19 for the period June-August 2021. The total sampling technique was used and processed with the chi-square test; **Result:** Most of the research subjects were in the range of 26-45 years (28.4%). More than half of the subjects were female (61.6%). There were 99 patients (34.3%) with severe conditions. Less than half of the patients had abnormal leukocyte and platelet examination results, namely 64 (22.1%) and 56 (19.4%). Patients with abnormal NLR and PLR examinations were p-ISSN: 0126-2092 e-ISSN: 2442-5230 135 (46.7%) and 123 (42.6%). There was a significant correlation between NLR and the severity of COVID-19 inpatients (p<0.001, OR=9.452). There is a significant correlation between PLR and the severity of COVID-19 inpatients (p<0.001, OR=7.268); **Conclusion:** This study concludes a significant correlation between NLR and PLR with the severity of COVID-19. Keywords: COVID-19; NLR; PLR; severity ## INTRODUCTION Coronavirus Disease 2019 (COVID-19) is a collection of various clinical symptoms ranging from mild respiratory symptoms to severe and life-threatening pneumonia caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and contagious. Diagnosis of COVID-19 is classified based on clinical symptoms, namely mild, moderate, severe and critical. Most of the patients with COVID-19 have mild symptoms such as experiencing low-grade fever, fatigue, and pneumonia. and without nο radiological found. Moderate patients have symptoms similar to mild patients with features of pneumonia. In patients with severe and critical symptoms, it can quickly develop into Acute Respiratory Distress Syndrome (ARDS), Multi Organ Failure (MOF), and can even cause death.² The pathogenesis of SARS-CoV-2 is still not known with certainty, but it is not much different from SARS-CoV. This virus primarily infects the cells lining the alveoli in the respiratory tract. The SARS-CoV-2 virus makes its way into host cells by binding to receptors on cells. Protein S in the viral envelope will bind to cell receptors, namely Angiotensin-Converting Enzym 2 (ACE2). The SARS-CoV-2 virus enters host cells mediated by increased viral uptake by Type 2 Transmembrane Serineprotease (TMPRSS2) in host cells which breaks down ACE2 and activates protein S. Type 2 Transmembrane Serineprotease (TMPRRS2) and ACE2 are expressed mainly in the lung as type 2 pneumocytes. Inside the cell, SARS-CoV-2 performs transcription of genetic material and protein translation which will later be used to make new virions. The viral RNA genome will be released into cytoplasm and a translation process will occur which will produce two polyproteins and a structural protein. The next process replication. The newly formed is glycoprotein passes into the endoplasmic reticulum. The nucleocapsid will be formed from the arrangement of the nucleocapsid RNA genome and proteins. Growth of virus particles occurs in the endoplasmic reticulum and golgi cells. Vesicles that already contain virus particles fuse with the plasma membrane which will release new virus.3 The severity of SARS-CoV-2 infection is determined by the cytopathic effect of the virus and its ability to overcome host cell immunity. Immune system dysregulation plays a role in tissue damage. Excessive immune response can cause tissue damage. On the other hand, an inadequate immune response allows the virus to replicate and damage tissues.4 The innate immune response to respiratory infections such as SARS-CoV-2 is characterized by neutrophils entering the lungs, especially in the alveoli. Increased neutrophil infiltration leads to collateral tissue damage, vascular stasis, and cytotoxicity.⁵ In patients with critical degrees of COVID-19, immune cells infiltrate the lungs and cause infection in the lungs with a pathogenesis that cannot be explained. The immune response created by the lymphocytes is triggered by the virus. Systemic infection suppresses cellular immunity. SARS-CoV-2 mainly acts on lymphocytes, especially T lymphocytes. Total lymphocytes, CD4+ T cells, CD8+ T cells, B cells, and NK cells decrease in COVID-19 patients, and in severe cases these cells are found to be lower than mild cases.⁶ Neutrophil lymphocyte ratio (NLR) is a simple marker of inflammation. The significance of NLR can be seen in bacterial pneumonia. NLR examination is also considered easier and cheaper. The NLR calculation is obtained from a comparison of the absolute neutrophil count and absolute lymphocyte count.7 It is known that the normal value of NLR in adults, nongeriatrics, and populations with good health conditions is 0.78-3.53.8 Based on the research of Eid et al. The sensitivity and specificity of NLR vary based on age and the level of NLR obtained. When the patient is > 50 years old and the NLR level is ≥ 3.1, a sensitivity of 95.24% and a specificity of 92.86% is obtained which indicates that the patient needs treatment in the ICU. When the patient was < 50 years old with NLR level ≥ 4.21, the sensitivity was 70.3% and the specificity was 93.7%.9 Neutrophil Lymphocyte Ratio (NLR) is a prognostic factor for endotracheal intubation and an independent predictor of the risk of death in COVID-19 patients. 10 NLR examination has been studied as a predictor of bacterial infections including pneumonia. The NLR value was found to be increased in patients with severe and critical COVID-19 conditions. An increase in the number of neutrophils indicates an inflammatory response and a decrease in the number of lymphocytes indicates damage to the immune system in COVID- 19 patients.¹¹ SARS-CoV-2 mainly attacks lymphocytes, especially T lymphocytes, so that patients are found to have lymphopenia. Inflammation-related lymphopenia will increase NLR in COVID-19 patients.⁶ Neutrophils are very important in the innate immune response while lymphocytes have а role in the inflammatory response. In COVID-19 patients, high levels of circulating neutrophils are found in the blood. Therefore, an increase in NLR reflects an imbalance in the inflammatory response and is considered an indicator of a patient progressing to severe disease. Increased NLR is associated with mortality in patients with severe sepsis and septic shock. Increased NLR is also associated with mortality in patients with comorbid cardiovascular disease. The mechanism occurs because inflammatory mediators from neutrophils cause degeneration of blood vessel walls while lymphocytes play role in anti-atherosclerosis. imbalance on hematological examination also indicates the development of the disease in a more severe direction and has a risk of complications such as ARDS, sepsis, and MODS. NLR examination is also assessed marker of chronic as а inflammation. 12 Patients who have higher NLR values have a higher risk of death during hospitalization. NLR examination can be done early on admission so that doctors can identify patients who have a risk of becoming critical so that the management of patients with increased NLR can be modified according to disease criteria. From this explanation, an increase NLR in COVID-19 patients can be used as a marker to assess the patient's prognosis
and severity.⁷ Platelet lymphocyte ratio (PLR) is a new marker of inflammation which is inexpensive and available in the clinical setting. The reference interval for PLR values in healthy adults (18-64 years) is 49-198 and in older adults (65-79 years) is 42-187.13 PLR as a non-specific marker of inflammation implies an interaction between the platelet count and lymphocyte count which can reflect aggregation as well as inflammatory pathways. 14 The sensitivity and specificity of the PLR examination were 100% and 81.5%.¹⁵ In patients with severe cases found increased PLR values. An increase in PLR is also related to the patient's length of stay in the hospital. If during treatment an increase in PLR is found more frequently, the patient will be treated longer and the possibility of severe pneumonia is greater. Patients who are found to have less increase in PLR values during treatment will have a shorter length of stay. Research conducted by Qu et al. found that the platelet count increased first then decreased in critically ill patients. The occurrence of thrombocytopenia in this severe patient is hematopoietic inhibition by SARS-CoV-2 because it directly attacks hematopoietic cells or stromal cells in the bone marrow. Another cause is extensive alveolar damage due to SARS-CoV-2 infection which causes injury to lung tissue and lung endothelial cells. The result is decreased platelet production because the lung is one of the organs where mature megakaryocytes release platelets. Injury to lung tissue can lead to activation, aggregation, retention of platelets in the lung, and thrombus formation at the site of injury leading to increased platelet consumption and depletion of platelets and megakaryocytes. 15 The increase in PLR at the start of admission greatly affects the mortality and morbidity of COVID-19 patients. PLR examination is an excellent marker for determining the prognosis of COVID-19 patients on the grounds that PLR is a marker of stable inflammation; PLR assays are sensitive to innate and acquired immune responses; PLR is an examination that is simple, cheap, and available in various health facilities.¹⁴ ## **METHODS** This research was performed at Andalas University Hospital in June-August 2021. This research was a crosssectional study using data from the patient medical record. The parameter in this study including the number of medical record, severity, RT-PCR result, age, sex, hematology laboratory profile (leukocyte, thrombocyte, leukocyte count: neutrophil, lymphocyte). Inclusion criteria were patients with confirmed COVID-19 and with complete laboratory data. This research was approved by The Research Ethics Committee of Medical Faculty Andalas University with number 996/UN.16.2/KEP-FK/2022. This study selected 289 inpatient COVID-19 cases who were RT-PCR positive. Categorical data were represented in the form of frequency and percentage. Quantitative data were defined as mean and standard deviation. A value of p<0,05 was considered statistically significant. Computer software was used for analyzing the data. ## **RESULT AND DISCUSSION** In June-August 2021, 434 patients with positive RT-PCR test were found. A total of 145 patients were exluded from the analysis. In this study, 289 subjects met the inclusion and exclusion criteria. The characteristics of the study subject can be seen in Table 1. Table 1. Characteristics of study subjects | ariable | Number (%) | |------------------|------------| | ge (years old) | | | < 17 | 8 (2.8) | | 17 – 25 | 34 (11.8) | | 26 – 45 | 82 (28.4) | | 46 - 55 | 41 (14.2) | | 56 - 65 | 72 (24.9) | | > 65 | 52 (18) | | ender | | | Male | 111 (38.4) | | Female | 178 (61.6) | | eukocyte | | | Leukopenia | 14 (4.8) | | Normal | 225 (77.9) | | Leukocytosis | 50 (17.3) | | hrombocyte | | | Thrombocytopenia | 47 (16.3) | | Normal | 223 (80.6) | | Thrombocytosis | 9 (3.1) | There were 111 male patients (38.4%) and 178 female patients (61.6%) involved in this study. This finding is different from several studies by Zhang *et al.* who conducted a study of 140 COVID-19 patients and found that 71 people (50.7%) were men. Compared to women, men have a higher risk of infection. The natural and adaptive immune response in women is stronger than in men. This makes less susceptible various women to infections, whether caused by fungi, bacteria, parasites or viruses. 16 Study by Aryani and Pramatik showed that were 46 male (54.8%) and 38 female (45.2%).¹⁷ Research conducted by Jin et al. found that the receptor cells attacked by both SARS-CoV-2 and SARS-CoV were the same, namely ACE2. Certain organ failures occur as a result of increased expression of the ACE2 receptor protein. ACE2 levels have been shown to be higher circulating in males than females. As a result of these higher levels, the clinical parameters in males are found to be more severe than in females.¹⁸ The mean age of all subject was 47.45±18.76 years. The age group 26 – 45 years is the largest age group with a total of 82 people, followed by the age group 56 – 65 years with 72 people, the age group > 65 with 52 people, the age group 46 – 55 years with 41 people, the age group 17 – 25 years as many as 34 people, and the age group <17 as many as 8 people. Study by Grasseli *et al.* study conducted in the ICU area of Lombardy, Italy found that the average patient age was 63 years (56-70 years) out of 1591 critical COVID-19 patients.¹⁹ Zhang *et al.* obtained from his research that the average number of COVID-19 patients who were research subjects was 57 years old with an age range of 25-87 years, where the majority of patients (70%) were > 50 years old.¹⁶ Patients were grouped into three groups, namely the group with normal examination results, leukopenia, leukocytosis. There were 225 patients (77.9%) with normal results, which made up more than half of the patients, who obtained normal leukocyte examination results, while 64 other people found abnormal results, where 14 patients (4.8%) with leukopenia and 50 subjects (17.3%) had leukocytosis. This is in line with the research of Zhao et al. who studied 612 COVID-19 patients, found 52 patients had increased leukocytes. This increase is in line with the age of patients who are getting older and patients who have comorbidities.²⁰ Research by Dawood et al. found 11 subjects (9.82%) had leukocytosis while 6 subjects (5.4%) had leukopenia.²¹ High levels of circulating neutrophils were found in COVID-19 patients. 12 This indicates an inflammatory response which indicates damage to the immune system of COVID-19 patients.¹¹ The results of the platelet examination showed that there were patients with higher normal results, namely 233 people (80,6%), compared to 56 people with abnormal results. In the abnormal results, the subjects were divided into thrombocytopenia, totalling 47 people (16,3%) and thrombocytosis, 9 people (3,1%). Research by Dawood et al. out of 112 randomly selected samples, 6 patients (5.4%) had thrombocytopenia and 7 patients (6.25%) had thrombocytosis.²¹ Qu et al. found that critical patients will initially experience an increase in platelet examination results, then along with the severity that occurs, their platelets will decrease. SARS-CoV-2 attacks directly on hematopoietic cells in the bone marrow resulting in inhibition of the hematopoietic process. Alveolar damage also causes lung tissue injury which results in decreased platelet production.¹⁵ **Table 2.** Bivariate analysis | Variable | P Value | OR | |----------|---------|-------| | NLR | < 0.001 | 9.452 | | PLR | < 0.001 | 7.268 | Based on the data analysis test using the chi-square test, the value of p <0.001 was obtained. This shows that there is a significant correlation between NLR and PLR with the severity of COVID-19 inpatients at Unand Hospital. It can be concluded that there is a correlation between NLR and PLR with the severity of COVID-19. This research is in line with the study conducted by Liu et al. This study involved 245 COVID-19 patients who stated that there was a significant relationship between NLR and an increased risk of death during hospitalization.⁷ Other studies state that the finding of NLR tends to be higher in patients with severe conditions. 11 Higher NLR infectious examination results are the result of an increase in the number of neutrophils and a decrease in the number of lymphocytes. This increase in NLR is influenced by the inflammatory response which causes an increase in neutrophil production and accelerates lymphocyte apoptosis. NLR elevation is an independent prognostic patients.²² biomarker for COVID-19 Increase NLR can be used as a biomarker for the risk factor of COVID-19.¹⁷ This is in line with study conducted by Qu et al which found that there was a relationship between increased PLR and the severity of COVID-19 patients. There was an increase in PLR in the severe group. In addition, an increased PLR was also found in patients who had a longer average hospital stay. PLR examination is useful as a marker of inflammation in various diseases to predict inflammation and death. Increased PLR is strongly associated with long-term mortality.¹⁵ Chan and Rout in their research concluded that the PLR examination can be used as an independent prognostic to differentiate patients with moderate and severe conditions. In severe patients, an increase in PLR will be found, while in non-severe patients, an average stable PLR value will be found.²³ Table of Correlation NLR and severity of COVID-19 inpatients at Andalas University Hospital | | | Severity | | | | | | |----------|------|------------------|----|------|-------|--|--| | Variable | Nons | Nonsevere Severe | | | | | | | | f | % | f | % | | | | | NLR | | | | | | | | | ≤ 3,53 | 134 | 70,5 | 20 | 20,2 | | | | | > 3,53 | 56 | 29,5 | 79 | 79,8 | 0,000 | | | | Total | 190 | 100 | 99 | 100 | | | | Table of Correlation NLR and severity of COVID-19 inpatients at Andalas University Hospital | | | Se | verity | | |
----------|-----|--------|--------|--------|---------| | Variable | Non | severe | | Severe | P value | | | f | % | f | % | | | PLR | | | | | | | ≤ 180 | 139 | 73,2 | 27 | 27,3 | | | > 180 | 51 | 26,8 | 72 | 72,7 | 0,000 | | Total | 100 | 100 | 00 | 100 | | # Master Table | NO | INITIAL | AGE | GENDER | LEUKOCYTE | NEUTROPHYL | THROMBOCYTE | LIMPHOCYTE | NLR | PLR | SEVERITY | |----|---------|-----|--------|-----------|------------|-------------|------------|-------|---------|-----------| | 1 | AR | 22 | FEMALE | 4800 | 0,33 | 200000 | 1584 | 1,48 | 126,26 | NONSEVERE | | 2 | A | 68 | FEMALE | 18400 | 0,02 | 373000 | 368 | 46 | 1013,59 | SEVERE | | 3 | BA | 26 | FEMALE | 7600 | 0,28 | 300000 | 2128 | 2,29 | 140,98 | NONSEVERE | | 4 | D | 66 | FEMALE | 16800 | 0,04 | 191000 | 672 | 22 | 284,23 | SEVERE | | 5 | DL | 27 | FEMALE | 5700 | 0,45 | 286000 | 2565 | 1 | 111,5 | NONSEVERE | | 6 | ES | 56 | FEMALE | 8400 | 0,38 | 362000 | 3192 | 1,37 | 113,41 | SEVERE | | 7 | ES | 29 | MALE | 7500 | 0,34 | 247000 | 2550 | 1,74 | 96,86 | NONSEVERE | | 8 | Е | 62 | MALE | 7000 | 0,23 | 413000 | 1610 | 3,04 | 256,52 | NONSEVERE | | 9 | Е | 58 | MALE | 3700 | 0,44 | 110000 | 1628 | 1,07 | 67,57 | NONSEVERE | | 10 | EL | 52 | FEMALE | 4300 | 0,23 | 172000 | 989 | 2,87 | 173,92 | NONSEVERE | | 11 | FA | 18 | MALE | 11600 | 0,07 | 238000 | 812 | 12,14 | 293,1 | NONSEVERE | | 12 | FA | 23 | FEMALE | 5600 | 0,34 | 321000 | 1904 | 1,62 | 168,59 | NONSEVERE | | 13 | G | 27 | FEMALE | 6300 | 0,32 | 205000 | 2016 | 1,78 | 101,69 | NONSEVERE | | 14 | AR | 73 | MALE | 12710 | 0,19 | 231000 | 2414,9 | 3,58 | 95,66 | NONSEVERE | | 15 | н | 30 | MALE | 4500 | 0,2 | 84000 | 900 | 3,5 | 93,33 | NONSEVERE | | 16 | E | 64 | FEMALE | 11070 | 0,11 | 235000 | 1217,7 | 7,27 | 192,99 | SEVERE | | 17 | IY | 73 | MALE | 3800 | 0,05 | 173000 | 190 | 18 | 910,53 | NONSEVERE | | 18 | IJ | 62 | MALE | 6900 | 0,2 | 165000 | 1380 | 3,5 | 119,57 | SEVERE | | 19 | J | 54 | MALE | 9900 | 0,16 | 442000 | 1584 | 4,69 | 279,04 | SEVERE | | 20 | J | 70 | FEMALE | 10100 | 0,17 | 194000 | 1717 | 4,18 | 112,99 | NONSEVERE | | 21 | KP | 21 | FEMALE | 7400 | 0,2 | 252000 | 1480 | 3,5 | 170,27 | NONSEVERE | | 22 | LH | 52 | FEMALE | 4000 | 0,2 | 152000 | 800 | 3,35 | 190 | NONSEVERE | | 23 | LH | 24 | MALE | 9000 | 0,34 | 262000 | 3060 | 1,76 | 85,62 | NONSEVERE | | 24 | MB | 24 | MALE | 9000 | 0,21 | 202000 | 1890 | 3,33 | 106,88 | NONSEVERE | | 25 | MY | 53 | MALE | 11000 | 0,04 | 263000 | 440 | 21,25 | 597,73 | SEVERE | | M | 63 | MALE | 4200 | 0,1 | 230000 | 420 | | 547,62 | | 134 M | | FEMALE | | 0,18 | 394000 | 1692 | | 232,86 | | |---|--|--|---------------------------------------|--------------|------------------|----------------|---------------------|----------------------------|-------------------------------------|------------------|----------------|----------------|-----------------------|-------------|------------------|--------------|----------------|------------------|-----------| | AR
AD | 25 | FEMALE | 8500 | 0,17 | 226000 | 1445
4050 | 4,29 | 156,4 | NONSEVERE
SEVERE | 135 MZ
136 M | 65
37 | MALE | 10800 | 0,24 | 160000 | 1008
1500 | 2,67 | 158,73
234,67 | NO
NO | | - | 42 | MALE | 15000
11100 | 0,27 | 224000
435000 | 4050
1998 | 4,61 | | | 137 MS | 54 | FEMALE | 9400
4200 | 0,25 | 352000
319000 | 1015 | 12,86 | 314,29 | | | | 26 | FEMALE | 8300 | 0,25 | 448000 | 2050 | 2,6 | 218,54 | NONSEVERE | 138 M | 54 | FEMALE | 6000 | 0,1 | 232000 | 1160 | 8,4 | 200 | SE | | _ | 29 | FEMALE
FEMALE | 8400
10400 | 0,31 | 156000 | 2604 | 2.75 | 59,91
64,1 | NONSEVERE
NONSEVERE | 139 MF
140 M | 48
58 | MALE
FEMALE | 14500
11600 | 0,08 | 345000
264000 | 712
1593 | 2.33 | 484,55
165,73 | | | S | 63 | FEMALE | 5500 | 0,22 | 160000
258000 | 1210 | 2,95 | 213,22 | NONSEVERE | 141 MR | 67 | FEMALE | 8900 | 0,1 | 468000 | 640 | 7,5 | 731,25 | SE | | A | 21 | FEMALE | | 0,56 | 148000 | 1680 | 0,54 | | NONSEVERE | 142 MN
143 ML | 68 | MALE
FEMALE | 5900 | 0,1 | 261000 | 1190 | 8,5 | 219,33 | | | B
LR | 27 | MALE
FEMALE | 8700
3800 | 0,05 | 273000
234000 | 435
1938 | 0,71 | 627,59
120,74 | NONSEVERE
NONSEVERE | 143 ML
144 NA | 53 | FEMALE | 6400
11900 | 0,14 | 195000
305000 | 630
2485 | 5,71
1,66 | 309,52
122,74 | NO
NO | | C | 27 | MALE | 4900 | 0,45 | 190000 | 2205 | 1 | 86,17 | NONSEVERE | 145 NL | 29 | FEMALE | 4500 | 0,33 | 246000 | 1917 | 2,52 | 128,33 | N | | G
A | 32 | FEMALE | 7000 | 0,18 | 192000 | 1404 | 3,89 | 136,75 | NONSEVERE | 146 N
147 N | 61 | FEMALE
MALE | 7100 | 0,16 | 150000 | 1744 | 1.93 | 86,01
96.23 | SI | | A. | 71
45 | FEMALE | 2100
7290 | 0,6 | 214000
193000 | 1260
1530,9 | 0,33 | 169,84
126,07 | NONSEVERE
NONSEVERE | 147 N
148 NN | 69 | MALE | 7100
10900 | 0,3 | 153000
270000 | 1590
2622 | 1,93 | 96,23 | N | | VВ | 38 | MALE | 5800 | 0,15 | 205000 | 870 | 5 | 235,63 | SEVERE | 149 NP | 30 | MALE
FEMALE | 5300 | 0,32 | 171000 | 1568 | 1,75 | 109,06 | N | | VS
(A | 28 | FEMALE | 10700 | 0,16 | 161000 | 1712
1562 | 4,63
3,18 | 94,04
149,17 | NONSEVERE
SEVERE | 150 N
151 N | 71 | FEMALE | 6900 | 0,2 | 248000 | 1540
1525 | 3,35
2,8 | 161,04 | | | YG | 27 | FEMALE | 7100 | 0,25 | 233000 | 1850 | 2,6 | 110,27 | NONSEVERE | 152 N | 61 | FEMALE | 4900
7700 | 0,25 | 200000 | 1080 | 5,07 | 216,67 | SI | | YA | 27 | FEMALE | 5100 | 0,33 | 296000 | 1683 | 1,61 | 175,88 | NONSEVERE | 153 N | 61 | FEMALE | 6100 | 0,23 | 222000 | 1288 | 2,96 | 172,36 | | | Y
YD | 54
88 | FEMALE
MALE | 5700
5000 | 0,32 | 262000
178000 | 1824 | 1,84
2,48 | 143,64 | NONSEVERE
NONSEVERE | 154 NO
155 N | 26
57 | FEMALE
MALE | 7200
5600 | 0,1 | 219000 | 920
1023 | 8,1
7,27 | 238,04
197,46 | SI | | ZM | 25 | FEMALE | 5400 | 0,51 | 260000 | 2754 | 0,78 | | NONSEVERE | 156 OH | 26 | FEMALE | 9200 | 0,11 | 295000 | 1494 | 3,89 | 197,46 | NO | | ZF | 24 | FEMALE | 10820 | 0,25 | 382000 | 2705 | | | NONSEVERE | 157 PY | 37 | MALE | 9300 | 0,03 | 139000 | 153 | 19,67 | 908,5 | NO | | ZJ
AY | 33 | MALE
FEMALE | 19200 | 0,03 | 254000
309000 | 576
1862 | 1.55 | 440,97
165,95 | SEVERE
NONSEVERE | 158 PA
159 PS | 26
8 | FEMALE | 8300
5100 | 0,22 | 219000
402000 | 1342
2640 | 1,09 | 163,19 | NO
NO | | A. | 62 | | 8700 | 0,15 | 176000 | 1305 | | 134,87 | | 160 R | 71 | FEMALE | 6100 | 0,5 | 220000 | 1850 | 0,7 | 118,92 | AN | 50 | FEMALE | 2900 | 0,13 | 281000 | 1547 | 6,15 | 181,64 | SEVERE | 161 R | Lee | MALE | Long | | | 1536 | lac I | 116,54 | l voc | | AL. | 29 | FEMALE | 11900 | 0,31 | 302000 | 1891 | 1,81 | 159,7 | NONSEVERE | 161 R
162 RA | 28 | FEMALE | 3700 | 0,24 | 179000
278000 | 1536 | | 222,76 | | | D. | 60 | MALE | 7200 | 0,2 | 149000 | 1120
1140 | 3,2 | 133,04 | NONSEVERE | 163 RF | 23 | FEMALE | 6400 | 0,38 | 215000 | 1786 | 1,29 | 120,38 | NO | | .D
.B | 27 | MALE | 6100
5600 | 0,3 | 218000
150000 | 920 | 2,83 | | SEVERE
NONSEVERE | 164 R | 54 | MALE | 7800 | 0,13 | 215000 | 962 | | 223,49
92,26 | SEV | | \P | 26 | MALE | 3800 | 0,27 | 137000 | 1107 | 2,26 | 123,76 | NONSEVERE | 165 RM
166 RA | 24 | FEMALE | 4700
7400 | 0,44 | 341000
254000 | 3696
1872 | 1,05
3,89 | 92,26
135,68 | | | AM
A | 36 | MALE
FEMALE | 4000 | 0,18 | 143000 | 1080 | 4,22
1,61 | | SEVERE
NONSEVERE | 167 RP | 24 | FEMALE | 8400 | 0,18 | 185000 | 1404 | 3,94 | 131,77 | NO | | ١ . | 62
71 | FEMALE | 4100
6000 | 0,33 | 157000 | 1008 | 2,75 | 135,93 | NONSEVERE | 168 R
169 RJ | 91
25 | FEMALE | 10400 | 0,15 | 353000 | 930
1725 | | 379,57
113,04 | SEV | | | 57 | MALE | 3500 | 0,24 | 208000 | 2280 | 2,92 | 91,23 | NONSEVERE | 169 RJ
170 RR | 25 | MALE | 7800
6200 | 0,23 | 195000
198000 | 1725
2378 | 0,57 | 83,26 | NO | | AI
AB | 26 | FEMALE | 4200 | 0,32 | 296000 | 2528 | 1,94 | | NONSEVERE | 171 RL | 25 | FEMALE | 7500 | 0,55 | 247000 | 1595 | 0,6 | 154,86 | NO | | AB
A | 28
44 | FEMALE | 9500
7900 | 0,26 | 293000
143000 | 2600
1408 | 2,54 | 112,69 | NONSEVERE
NONSEVERE | 172 R
173 RA | 58 | MALE
FEMALE | 4100 | 0,26 | 121000 | 1534 | 2,5 | | NO | | AS | 29 | FEMALE | 10000 | 0,11 | 224000 | 1012 | 7,45 | 221,34 | SEVERE | 173 RA
174 RA | 16
28 | FEMALE | 2900
5900 | 0,44 | 275000
277000 | 3608
1690 | 2,31 | 76,22
163,91 | NO | | AI | 17 | FEMALE | 6400 | 0,26 | 192000 | 1092 | 2,46 | 175,82 | NONSEVERE | 175 RD | 32 | FEMALE | 8200 | 0,13 | 160000 | 741 | 5,85 | 215,92 | SEV | | A
AA | 77
56 | MALE | 9200
4200 | 0,18 | 192000
131000 | 990
747 | 3,89
9,22 | 193,94
175,37 | NONSEVERE
NONSEVERE | 176 R | 72
65 | FEMALE | 6500 | 0,27 | 267000 | 1512
924 | 2,26
3,32 | 176,59
159.09 | SEV | | AP | 9 | FEMALE | 5500 | 0,09 | 139000 | 1260 | 1,05 | 110,32 | NONSEVERE | 177 R
178 SM | 72 | FEMALE | 5700 | 0,22 | 147000
260000 | 924
3384 | 1,39 | 76,83 | NO | | AU. | 31 | FEMALE
MALE | 8300 | 0,26 | 280000 | 2002 | 2,5 | | NONSEVERE | 179 SM | 62 | FEMALE | 4200 | 0,39 | 89000 | 1599 | 1,28 | 55,66 | NO | | A
D | 68 | FEMALE | 3000
7700 | 0,1 | 160000
262000 | 660
1587 | 7,8
2,91 | 242,42
165,09 | SEVERE
NONSEVERE | 180 S
181 SR | 47
71 | FEMALE | 9400 | 0,28 | 111000 | 1680
714 | 2,18 | 66,07
208,68 | SEV | | D | 51 | FEMALE | 6600 | 0,18 | 270000 | 1080 | 3,89 | 250 | SEVERE | 182 SY | 24 | FEMALE | 6000 | 0,14 | 149000
248000 | 1180 | 8,3 | 210,17 | | | DN
DR | 60 | MALE | 6900 | 0,1 | 283000 | 1120
1200 | 8,5
2,52 | 252,68 | SEVERE
NONSEVERE | 183 SA | 37 | MALE | 5100 | 0,48 | 254000 | 3024 | | 83,99 | NO | | DR
ED | 61
33 | FEMALE |
6000
11200 | 0,25 | 271000
180000 | 1955 | | | NONSEVERE | 184 SA
185 SS | 24 | FEMALE | 6300 | 0,11 | 213000
156000 | 1122
2067 | 7,27
1,28 | 189,84
75,47 | SEV
NO | | EE | 27 | FEMALE | 4800 | 0,23 | 453000 | 2277 | 2,96 | | NONSEVERE | 186 SM | 94 | MALE | 10200 | 0,39 | 107000 | 1620 | 2 | 66,05 | NO | | ER | 56 | FEMALE | 8500 | 0,4 | 185000 | 1720 | 1,2 | 107,56 | NONSEVERE | 187 S | 64 | FEMALE | 5300 | 0,16 | 139000 | 1072 | 4,63 | 129,66 | SEV | EY | 61 | FEMALE | 9900 | 0,37 | 323000 | 2590 | 1,38 | 124,71 | NONSEVERE | Lucklen | Lo | MALE | I I | | l | 1274 | 631 | 202.00 | Lee | | E | 72 | FEMALE | 4300 | 0,29 | 308000 | 1914 | 2,03 | 160,92 | NONSEVERE | 188 SP
189 SM | 51
21 | MALE | 5400
6700 | 0,13 | 386000
199000 | 1274 | | 302,98
136,11 | | | ES
EL | 53 | FEMALE
FEMALE | 7000
6600 | 0,26 | 169000
205000 | 1144
750 | 4,73 | 147,73
273,33 | SEVERE
NONSEVERE | 190 S | 49 | MALE | 9800 | 0,27 | 110000 | 1971 | 2,52 | 55,81 | NO | | EY | 41 | FEMALE | 4400 | 0,15 | 205000
298000 | 1975 | 2,72 | 150,89 | NONSEVERE | 191 SP
192 S | 27
67 | FEMALE | 4300 | 0,21 | 98000 | 1638
1200 | 3,48
2,75 | 59,83
146,67 | NO | | ES | 49 | FEMALE | 5000 | 0,33 | 142000 | 1188 | 1,7 | 119,53 | NONSEVERE | 192 S
193 S | 57 | MALE | 7300
7800 | 0,24 | 176000
164000 | 536 | 45 | 305,97 | SEV | | E
FR | 61 | MALE
FEMALE | 7900 | 0,19 | 187000 | 1178 | 3,68
1,35 | 158,74 | NONSEVERE
SEVERE | 194 S | 74 | MALE | 5000 | 0,06 | 599000 | 732 | 14,33 | 818,31 | SEV | | ER
E | 57 | FEMALE | 3600
6200 | 0,37 | 157000
578000 | 1122 | 2,91 | 515,15 | NONSEVERE | 195 SB
196 TW | 48 | MALE
FEMALE | 26800 | 0,18 | 143000 | 1422
1760 | 3,89 | 100,56
132,95 | SEV | | Е | 56 | FEMALE | 4200 | 0,3 | 215000 | 1950 | 1,97 | 110,26 | NONSEVERE | 196 TW
197 VW | 26 | FEMALE | 12200
7900 | 0,32 | 234000
178000 | 1760
520 | | 132,95
342,31 | NO | | A | 70 | FEMALE
MALE | 5100 | 0,22 | 173000 | 1650
480 | 3,18 | 104,85
385,42 | NONSEVERE
SEVERE | 198 W | 47 | MALE | 5500 | 0,42 | 106000 | 1428 | 1,1 | 74,23 | SEV | | A | 63 | FEMALE | 7500 | 0,06 | 185000
242000 | 928 | 2,03 | 385,42
260,78 | NONSEVERE | 199 WS
200 YJ | 27
66 | FEMALE
MALE | 4000 | 0,47 | 287000 | 3995
670 | 7.7 | 71,84 | NO | | FR | 3 | FEMALE | 8000 | 0,45 | 430000 | 3195 | 1,16 | 134,59 | NONSEVERE | 200 YJ
201 Y | 45 | FEMALE | 3400
8500 | 0,1 | 167000
217000 | 1900 | 1,47 | 249,25
114,21 | NO | | M | 25 | FEMALE | 3200 | 0,48 | 173000 | 2208
2205 | 0,83 | 78,35 | NONSEVERE
NONSEVERE | 202 Y | 63 | MALE | 6700 | 0,2 | 222000 | 1620 | 3,8 | 137,04 | NO | | FP
FY | 10
55 | FEMALE | 7100
4600 | 0,45 | 212000
182000 | 966 | 2,78 | 96,15
188,41 | SEVERE | 203 Y
204 YY | 63
50 | MALE | 5000 | 0,35 | 222000 | 1715
2380 | 1,51 | 129,45
106,3 | NO | | L | 24 | FEMALE | 4900 | 0,03 | 255000 | 8460 | 29 | 30,14 | NONSEVERE | 205 YE | 52 | MALE | 8100
4900 | 0,35 | 253000
122000 | 1200 | | | NO | | F
GO | 35 | FEMALE | 4200 | 0,12 | 175000 | 944 | 6,5
4,63 | 217,66
156,78 | NONSEVERE
SEVERE | 206 YR | 65 | MALE | 6800 | 0,25 | 215000 | 1200 | 2,4 | 179,17 | NO | | GP
GP | 63 | MALE | 282000
6700 | 0,16 | 148000
236000 | 2080 | 2,5 | 113,46 | SEVERE | 207 YM
208 YA | 59 | MALE
FEMALE | 4000 | 0,17 | 139000 | 714 | | 194,68
328.8 | SEV | | G | 56 | MALE | 5900 | 0,18 | 324000 | 882 | 4,28 | 367,35 | SEVERE | 209 YM | 71 | MALE | 4800
4200 | 0,16 | 242000
287000 | 1166 | | 246,14 | NO | | GA
MD | 59 | FEMALE
MALE | 8000 | 0,24 | 127000 | 984
590 | 2,83 | 129,07
335,59 | NONSEVERE
NONSEVERE | 210 ZD | 21 | FEMALE | 4600 | 0,44 | 202000 | 1496 | | 135,03 | NO | | HI
HI | 62 | FEMALE | 4900 | 0,1 | 198000
171000 | 902 | 1,12 | 189,58 | NONSEVERE | 211 Z
212 ZZ | 55 | MALE | 5300
3400 | 0,25 | 306000
147000 | 1025 | 2,64 | 298,54
331,44 | SEV | | HN | 65 | MALE | 5900 | 0,17 | 129000 | 1122 | 4,41 | 114,97 | NONSEVERE | 213 ZA | 74 | FEMALE | 3400
4100 | 0,06 | 233000 | 1683 | | 138,44 | NO | | НВ | 44 | MALE | 2200 | 0,12 | 202000 | 852 | 6,67 | 237,09 | NONSEVERE | 214 ZK | 68 | MALE | 7400 | | 234000 | 360 | | | SEV | HA | 66 | MALE | 6600 | 0,25 | 151000 | 1325 | | | NONSEVERE | 215 SY | 51 | FEMALE | 5100 I | 0,06 | 208000 | 330 | 10.33 | 630,3 | SEV | | н | 36 | FEMALE
MALE | | 0,23 | 343000 | 2967
1386 | | | NONSEVERE
NONSEVERE | 216 MY | 60 | FEMALE | 18000 | 0,06 | 237000 | 765 | 9,89 | 309,8 | SE | | н | 38 | FEMALE | 5300
12900 | 0,21 | 93000
151000 | 1755 | 2,52 | 86,04 | NONSEVERE | 217 A | | FEMALE | 4300 | 0,22 | 119000 | 946 | 2,09 | 125,79 | | | I | 39 | MALE | 6600 | 0,33 | 243000 | 1980 | 1,67 | 112,73 | NONSEVERE | 218 H
219 R | 38
56 | MALE
FEMALE | 7100
3300 | 0,27 | 453000
100000 | 1917
1188 | 2,26
1,33 | 236,31
84,18 | NO | | IR
IT | 24 | MALE | 6500 | 0,41 | 183000 | 2050 | | 89,27
242,6 | NONSEVERE
SEVERE | 220 BF | 29 | MALE | 6100 | 0,36 | 228000 | 2074 | 1,47 | 109,93 | | | C | 57 | FEMALE | 5000 | 0,16 | 295000
296000 | 3010 | | | NONSEVERE | 221 MF | 28 | MALE | 7400 | 0,14 | 305000 | 1036 | 5,71 | 294,4 | NO | | С | 67 | MALE | 7600 | 0,27 | 154000 | 1323 | 2,41 | 116,4 | NONSEVERE | 222 AS
223 Y | 36
87 | FEMALE | 7100 | 0,13 | 215000 | 923
1134 | 6,23
4,28 | 232,94
226,63 | SEV | | IR
I | 38 | FEMALE
FEMALE | 8600 | 0,44 | 164000 | 1672
1176 | | | NONSEVERE
NONSEVERE | 223 Y
224 I | 65 | MALE | 6300
41600 | 0,18 | 257000
434000 | 1134 | 4,28
28,67 | 226,63
347,76 | | | K | 52
52 | MALE | 4900
3800 | 0,12 | 162000
129000 | 546 | | 137,76
236,26 | | 225 J | 50 | MALE | 6500 | 0,06 | 204000 | 390 | 14 | 532,08 | NO | | | 79 | MALE | 9800 | 0,43 | 208000 | 1333 | 1,05 | 156,04 | NONSEVERE | 226 Z | 48 | MALE | 11700 | 0,03 | 282000 | 351 | 29,33 | 803,42 | | | IJ | 28 | MALE | 3900 | 0,42 | 343000 | 4578 | | | NONSEVERE | 227 HP
228 ZC | 63
48 | MALE | 7300 | 0,05 | 104000
87000 | 300
1314 | 16,4 | | NO | |)
)) | 50
25 | FEMALE
MALE | 3100
10900 | 0,21 | 427000
284000 | 1050
1530 | 3,33 | | NONSEVERE
NONSEVERE | 229 Y | 55 | MALE | 88700 | 0,03 | 77000 | 2661 | 20 | 28,94 | SE | | J
J
K | | MALE | 5000 | 0,3 | 269000 | 920 | | 292,39 | NONSEVERE | 230 BR | 70 | MALE | 12500 | 0,1 | 615000 | 1250 | 8 | 492 | SE | | J
K
KA | 59 | FEMALE | | 0,06 | 233000 | 714 | | | NONSEVERE | 231 E
232 SY | 59
24 | FEMALE | 8700 | 0,3 | 609000
248000 | 2610
1180 | 1,87 | 233,33 | | | JJ
K
KA
KA
KF | 59
24 | | 4000 | 0,15 | 179000
132000 | 1350 | | 132,59
132 | SEVERE
NONSEVERE | 233 J | 69 | FEMALE | 11800
12000 | 0,1 | 248000
448000 | 720 | 14 | 622,22 | SEV | | J
K
KA
KA
K
KF | 59
24
76 | FEMALE | | 0,4 | 372000 | 2160 | 3,4 | 172,22 | NONSEVERE | 234 JD | 63 | MALE | 13000 | 0,06 | 208000 | 780 | 14,17 | 266,67 | SEV | | JJ K KA KA K KF LD LN | 59
24 | FEMALE | 9000 | | 361000 | 1240 | 3,35 | 291,13 | NONSEVERE | 235 YS | 27 | FEMALE | 11400 | 0,13 | 171000
217000 | 1482
2080 | 6,15 | 115,38 | | | JJ J K KA KA KF KG LD LN LS | 59
24
76
21
21
39 | FEMALE
FEMALE | 2500 | 0,2 | | | 9 | | | 236 A | 68 | FEMALE | | | | | | | | | JJ K KA K KF KG LD LN LS LA | 59
24
76
21
21
39
21 | FEMALE | 2500
10800 | 0,19 | 120000 | 950
867 | | | NONSEVERE
NONSEVERE | 236 A
237 E | 57 | | 6500
12100 | 0,32 | 354000 | 1210 | 8 | 292,56 | SEV | | JJ J K KA K KF KG LD LN LS LA LS LA | 59
24
76
21
21
39 | FEMALE
FEMALE
FEMALE
FEMALE
FEMALE | 2500
10800
6200 | | | | 4,12 | 268,74 | NONSEVERE
NONSEVERE
NONSEVERE | 237 E
238 HY | 57 | MALE
FEMALE | 12100
7900 | 0,1
0,14 | 354000
628000 | 1210
1106 | 8 | 292,56
567,81 | NO | | J
K
KA
K
KF
KG
LD
LN
LS | 59
24
76
21
21
39
21
61 | FEMALE
FEMALE
FEMALE
FEMALE | 2500
10800
6200
5000
5100 | 0,19
0,17 | 120000
233000 | 867 | 4,12
2,5
6,25 | 268,74
171,05
244,52 | NONSEVERE | 237 E | 57
21
64 | MALE | 12100
7900
6700 | 0,1 | 354000 | 1210 | 8
5
4,11 | 292,56
567,81 | NO | | 242 | YI | 62 | MALE | 7900 | 0,17 | 257000 | 1343 | 4,18 | 191,36 | SEVERE | |-----|----|----|--------|--------|------|--------|-------|-------|---------|-----------| | 243 | LS | 44 | FEMALE | 185000 | 0.07 | 269000 | 12950 | 12,29 | 20,77 | NONSEVERE | | 244 | M | 61 | MALE | 9800 | 0,11 | 347000 | 1078 | 7 | 321,89 | SEVERE | | 245 | F | 41 | FEMALE | 8000 | 0.16 | 147000 | 1280 | 4,81 | 114,84 | SEVERE | | 246 | R | 57 | FEMALE | 3300 | 0,33 | 232000 | 1089 | 1,67 | 213,04 | NONSEVERE | | 247 | NM | 73 | MALE | 48400 | 0,06 | 53000 | 2904 | 9,33 | 18,25 | NONSEVERE | | 248 | ED | 33 | FEMALE | 7400 | 0,09 | 224000 | 666 | 9,56 | 336,34 | SEVERE | | 249 | D | 60 | FEMALE | 16800 | 0,09 | 198000 | 1512 | 8,89 | 130,95 | SEVERE | | 250 | A | 32 | FEMALE | 4500 | 0,17 | 137000 | 765 | 4,47 | 179,08 | NONSEVERE | | 251 | Y | 67 | FEMALE | 7400 | 0,11 | 175000 | 814 | 7,36 | 214,99 | SEVERE | | 252 | A | 70 | MALE | 13300 | 0,02 | 272000 | 266 | 46 | 1022,56 | SEVERE | | 253 | M | 54 | FEMALE | 11600 | 0,1 | 232000 | 1160 | 8,4 | 200 | SEVERE | | 254 | FA | 48 | FEMALE | 10600 | 0,1 | 357000 | 1060 | 8 | 336,79 | NONSEVERE | | 255 | Y | 62 | FEMALE | 12900 | 0,06 | 379000 | 774 | 14,5 | 489,66 | SEVERE | | 256 | D | 66 | FEMALE | 6000 | 0,18 | 182000 | 1080 | 3,89 | 168,52 | SEVERE | | 257 | K | 47 | MALE | 7900 | 0,25 | 256000 | 1975 | 2 | 129,62 | NONSEVERE | | 258 | E | 55 | FEMALE | 5300 | 0,24 | 200000 | 1272 | 2,75 | 157,23 | NONSEVERE | | 259 | RD | 32 | FEMALE | 5700 | 0,13 | 160000
| 741 | 5,85 | 215,92 | NONSEVERE | | 260 | R | 50 | FEMALE | 4800 | 0,25 | 384000 | 1200 | 2,44 | 320 | SEVERE | | 261 | KY | 60 | FEMALE | 5900 | 0,23 | 242000 | 1357 | 3,04 | 178,33 | NONSEVERE | | 262 | A | 63 | MALE | 8300 | 0,14 | 176000 | 1162 | 3,79 | 151,46 | NONSEVERE | | 263 | M | 67 | MALE | 6100 | 0,06 | 195000 | 366 | 14 | 532,79 | SEVERE | | 264 | M | 70 | MALE | 12300 | 0,11 | 274000 | 1353 | 7,27 | 202,51 | SEVERE | | 265 | A | 51 | MALE | 6000 | 0,25 | 203000 | 1500 | 2,6 | 135,33 | NONSEVERE | | 266 | Y | 64 | FEMALE | 5600 | 0,18 | 279000 | 1008 | 3,89 | 276,79 | NONSEVERE | | 267 | SD | 33 | FEMALE | 9500 | 0,1 | 223000 | 950 | 7,2 | 234,74 | NONSEVERE | | 268 | PF | 20 | FEMALE | 4000 | 0.52 | 218000 | 2080 | 0.67 | 104.81 | NONSEVERE | | 269 | AG | 32 | FEMALE | 5200 | 0,2 | 169000 | 1040 | 3,65 | 162,5 | NONSEVERE | |-----|----|----|--------|-------|------|--------|------|-------|--------|-----------| | 270 | NF | 48 | FEMALE | 5900 | 0,15 | 251000 | 885 | 5,13 | 283,62 | SEVERE | | 271 | DH | 44 | FEMALE | 13000 | 0,06 | 356000 | 780 | 14 | 456,41 | SEVERE | | 272 | S | 57 | MALE | 26800 | 0,02 | 168000 | 536 | 40 | 313,43 | SEVERE | | 273 | HA | 35 | MALE | 3700 | 0,22 | 151000 | 814 | 3,05 | 185,5 | NONSEVERE | | 274 | VA | 27 | FEMALE | 14700 | 0,13 | 353000 | 1911 | 5,77 | 184,72 | NONSEVERE | | 275 | N | 52 | FEMALE | 6400 | 0,11 | 335000 | 704 | 7,36 | 475,85 | SEVERE | | 276 | A | 70 | FEMALE | 8900 | 0,2 | 233000 | 1780 | 3,55 | 130,9 | NONSEVERE | | 277 | В | 75 | FEMALE | 11800 | 0.08 | 219000 | 944 | 10,25 | 231,99 | SEVERE | | 278 | WR | 32 | FEMALE | 6300 | 0,17 | 200000 | 1071 | 4,29 | 186,74 | NONSEVERE | | 279 | BY | 66 | FEMALE | 14500 | 0,03 | 428000 | 435 | 30,67 | 983,91 | SEVERE | | 280 | YK | 43 | FEMALE | 8900 | 0,02 | 131000 | 178 | 43 | 735,96 | SEVERE | | 281 | K | 74 | FEMALE | 9000 | 0,08 | 416000 | 720 | 10,75 | 577,78 | SEVERE | | 282 | MN | 31 | FEMALE | 7900 | 0,14 | 289000 | 1106 | 5,71 | 261,3 | SEVERE | | 283 | RP | 29 | MALE | 6100 | 0,22 | 274000 | 1342 | 2,95 | 204,17 | NONSEVERE | | 284 | MN | 64 | MALE | 5600 | 0,22 | 197000 | 1232 | 2,91 | 159,9 | NONSEVERE | | 285 | RA | 35 | FEMALE | 17700 | 0,04 | 204000 | 708 | 21,75 | 288,14 | NONSEVERE | | 286 | S | 74 | FEMALE | 2700 | 0,35 | 104000 | 945 | 1,49 | 110,05 | NONSEVERE | | 287 | DM | 55 | FEMALE | 8200 | 0,12 | 164000 | 984 | 7,33 | 166,67 | NONSEVERE | | 288 | AN | 63 | FEMALE | 5500 | 0,28 | 258000 | 1540 | 2,11 | 167,53 | NONSEVERE | | 289 | J | 65 | FEMALE | 9600 | 0,11 | 127000 | 1056 | 7,36 | 120,27 | SEVERE | #### Age | | | Frequency | Percent | Valid Percent | Cumulative
Percent | |-------|-------|-----------|---------|---------------|-----------------------| | Valid | 1 | 8 | 2,8 | 2,8 | 2,8 | | | 2 | 34 | 11,8 | 11,8 | 14,5 | | | 3 | 82 | 28,4 | 28,4 | 42,9 | | | 4 | 41 | 14,2 | 14,2 | 57,1 | | | 5 | 72 | 24,9 | 24,9 | 82,0 | | | 6 | 52 | 18,0 | 18,0 | 100,0 | | | Total | 289 | 100,0 | 100,0 | | #### Gende | | | Frequency | Percent | Valid Percent | Cumulative
Percent | |-------|--------|-----------|---------|---------------|-----------------------| | Valid | Male | 111 | 38,4 | 38,4 | 38,4 | | | Female | 178 | 61,6 | 61,6 | 100,0 | | | Total | 289 | 100,0 | 100,0 | | #### Leukocyte | | | Frequency | Percent | Valid Percent | Cumulative
Percent | |-------|-------|-----------|---------|---------------|-----------------------| | Valid | 1,00 | 14 | 4,8 | 4,8 | 4,8 | | | 2,00 | 225 | 77,9 | 77,9 | 82,7 | | | 3,00 | 50 | 17,3 | 17,3 | 100,0 | | | Total | 289 | 100,0 | 100,0 | | #### Thrombocyte | | | Frequency | Percent | Valid Percent | Cumulative
Percent | |-------|-------|-----------|---------|---------------|-----------------------| | Valid | 1,00 | 47 | 16,3 | 16,3 | 16,3 | | | 2,00 | 233 | 80,6 | 80,6 | 96,9 | | | 3,00 | 9 | 3,1 | 3,1 | 100,0 | | | Total | 289 | 100,0 | 100,0 | | #### Severity | | | Frequency | Percent | Valid Percent | Cumulative
Percent | |-------|-----------|-----------|---------|---------------|-----------------------| | Valid | Nonsevere | 190 | 65,7 | 65,7 | 65,7 | | | Severe | 99 | 34,3 | 34,3 | 100,0 | | | Total | 289 | 100,0 | 100,0 | | Univariate Test **Bivariate Test** #### NLR * Severity Crosstabulation Count | | | Seve | Total | | |-------|--------|-----------|--------|-----| | | | Nonsevere | Severe | | | NLR | < 3,54 | 134 | 20 | 154 | | | > 3,53 | 56 | 79 | 135 | | Total | | 190 | 99 | 289 | #### **Chi-Square Tests** | | Value | df | Asymp. Sig.
(2-sided) | Exact Sig.
(2-sided) | Exact Sig.
(1-sided) | |---------------------------------|-----------|----|--------------------------|-------------------------|-------------------------| | Pearson Chi-Square | 66,220(b) | 1 | ,000 | | | | Continuity
Correction(a) | 64,213 | 1 | ,000 | | | | Likelihood Ratio | 69,349 | 1 | ,000 | | | | Fisher's Exact Test | | | | ,000 | ,000 | | Linear-by-Linear
Association | 65,991 | 1 | ,000 | | | | N of Valid Cases | 289 | | | | | ## a Computed only for a 2x2 table b 0 cells (,0%) have expected count less than 5. The minimum expected count is 46,25. PLR * Severity Crosstabulation Count | | | Severity | | Total | | |-------|-------|-----------|--------|-------|---| | | | Nonsevere | Severe | | | | PLR | < 181 | 139 | 27 | 166 | Γ | | | > 180 | 51 | 72 | 123 | | | Total | | 190 | 99 | 289 | | #### Chi-Square Tests | | Value | df | Asymp. Sig.
(2-sided) | Exact Sig.
(2-sided) | Exact Sig.
(1-sided) | |---------------------------------|-----------|----|--------------------------|-------------------------|-------------------------| | Pearson Chi-Square | 56,055(b) | 1 | ,000 | | | | Continuity
Correction(a) | 54,194 | 1 | ,000 | | | | Likelihood Ratio | 57,160 | 1 | ,000 | | | | Fisher's Exact Test | | | | ,000 | ,000 | | Linear-by-Linear
Association | 55,862 | 1 | ,000 | | | | N of Valid Cases | 289 | | | | | #### a Computed only for a 2x2 table b 0 cells (,0%) have expected count less than 5. The minimum expected count is 42,13. ## **CONCLUSION** There was a significant correlation between NLR and PLR with severity of COVID-19 inpatients. Increase NLR and PLR value can be used as a marker to assess the prognosis and severity of patients. NLR and PLR examinations need to be done at the beginning of hospitalization so that treatment can be done as early as possible. ## **FINANCIAL SUPPORT** Nothing. ## **ACKNOWLEDGEMENT** The authors would like to thank all parties who support this research. # **CONFLICT OF INTEREST** Nothing. # **DAFTAR PUSTAKA** - Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020;41(12):1100– 15. - Wang Y, Wang Y, Chen Y, Qin Y. Unique epidemiological and clinical - features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. 2020;92(6):568-76. - Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. pathophysiology, transmission, - diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A Review. JAMA. 2020;324(8):782-93. - Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-32. - 5. Wang Y, Ju M, Chen C, Yang D, Hou D, Tang X, *et al.* Neutrophil-to-lymphocyte ratio as a prognostic marker in acute respiratory distress syndrome patients: a retrospective study. J Thorac Dis. 2018;10(1):273-82. - 6. Nalbant A, Kaya T, Varim C, Yaylaci S, Tamer A, Cinemre H. Can the neutrophil/lymphocyte ratio (NLR) have a role in the diagnosis of coronavirus 2019 disease (COVID-19)? Rev Assoc Med Bras (1992). 2020;66(6):746-51. - 7. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX, *et al.* Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect. 2020;81(1):e6. - 8. Forget P, Khalifa C, Defour JP, Latinne D, van Pel MC, de Kock M. What is the normal value of the - neutrophil-to-lymphocyte ratio?. BMC Res Notes. 2017;10(1):1-4. - 9. Eid MM, Al-Kaisy M, Regeia WAL, Khan HJ. The prognostic accuracy of neutrophil-lymphocyte ratio in covid-19 patients. Front Emerg Med. 2021;5(1):0-5. - 10. Bedel C, Korkut M. Neutrophil-to-lymphocyte ratio and COVID-19. Shock (Augusta, Ga). 2021;56(5):874. - 11. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, *et al.* Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8. - 12. Tatum D, Taghavi S, Houghton A, Stover J, Toraih E, Duchesne J. Neutrophil-to-lymphocyte ratio and outcomes in Louisiana COVID-19 patients. Shock (Augusta, Ga). 2020;54(5):652-8. - 13. Luo H, He L, Zhang G, Yu J, Chen Y, Yin H, *et al.* Normal reference intervals of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and systemic immune inflammation index in healthy adults: a large multi-center study from Western China. Clin Lab. 2019;65(3):255-65. - 14. Simadibrata DM, Pandhita BAW, Ananta ME, Tango T. Platelet-to-lymphocyte ratio, a novel biomarker to predict the severity of COVID-19 patients: A systematic review and meta-analysis. 2020;23(1):20-6. - 15. Qu R, Ling Y, Zhang Y, Wei L, Chen X, Li X, *et al.* Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol. 2020;92(9):1533-1541. - 16. Zhang J, Dong X, Cao Y, Yuan Y, Yang Y, Yan Y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730-41. - 17. Aryani D, Pramatik DN. Comparison between Neutrophil Lymphocyte Ratio and Derived Neutrophil Lymphocyte Ratio as the Risk Factor of COVID-19. Indones J Clinical Pathol Med Laboratory. 2021;27(3):260–4. - 18. Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, *et al*. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front Public Health. 2020;8:152. - 19. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, *et
al.* Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574–81. - 20. Zhao K, Li R, Wu X, Zhao Y, Wang T, Zheng Z, et al. Clinical features in 52 patients with COVID-19 who have increased leukocyte count: a retrospective analysis. Eur J Clin Micribiol. 2022;39(12):2279–87. - 21. Dawood Q, Al-Hashim Z, al Hijaj BA, Jaber R, Khalaf A. Study of hematological parameters in patients with coronavirus disease 2019 in Basra. Iraqi Journal of Hematology. 2020;9(2):160. - 22. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Springer Berlin Heidelberg. 2017;39(5):529-39. - 23. Chan AS, Rout A. Use of neutrophilto-lymphocyte and platelet-tolymphocyte ratios in COVID-19. J Clin Med. 2020;12(7):448. 24.